Some results on Gaussian Besov-Lipschitz spaces and Gaussian Triebel-Lizorkin spaces

نویسندگان

  • Ebner Pineda
  • Wilfredo Urbina
چکیده

In this paper we consider the Gaussian Besov-Lipschitz B α p,q (γ d) and Gaussian Triebel-Lizorkin F α p,q (γ d) spaces, for any α > 0, studying the inclusion relations among them, proving that the Gaussian Sobolev spaces L p α (γ d) are contained in them, giving some interpolation results and studying the continuity properties of the Ornstein-Uhlenbeck semigroup, the Poisson-Hermite semigroup and the Bessel potentials on them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Besov-Type and Triebel–Lizorkin-Type Spaces Associated with Heat Kernels

Let (M,ρ, μ) be an RD-space satisfying the non-collapsing condition. In this paper, the authors introduce Besov-type spaces B p,q (M) and Triebel–Lizorkin-type spaces F s,τ p,q (M) associated to a non-negative self-adjoint operator L whose heat kernels satisfy some Gaussian upper bound estimate, Hölder continuity, and the stochastic completeness property. Characterizations of these spaces via P...

متن کامل

Heat Kernel Based Decomposition of Spaces of Distributions in the Framework of Dirichlet Spaces

Classical and nonclassical Besov and Triebel-Lizorkin spaces with complete range of indices are developed in the general setting of Dirichlet space with a doubling measure and local scale-invariant Poincaré inequality. This leads to Heat kernel with small time Gaussian bounds and Hölder continuity, which play a central role in this article. Frames with band limited elements of sub-exponential s...

متن کامل

On the Construction of Frames for Triebel-lizorkin and Besov Spaces

We present a general method for construction of frames {ψI}I∈D for Triebel-Lizorkin and Besov spaces, whose nature can be prescribed. In particular, our method allows for constructing frames consisting of rational functions or more general functions which are linear combinations of a fixed (small) number of shifts and dilates of a single smooth and rapidly decaying function θ such as the Gaussi...

متن کامل

Frame Characterizations of Besov and Triebel–lizorkin Spaces on Spaces of Homogeneous Type and Their Applications

The author first establishes the frame characterizations of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type. As applications, the author then obtains some estimates of entropy numbers for the compact embeddings between Besov spaces or between Triebel–Lizorkin spaces. Moreover, some real interpolation theorems on these spaces are also established by using these frame characteriza...

متن کامل

Compactly Supported Frames for Spaces of Distributions Associated with Non-negative Self-adjoint Operators

A small perturbation method is developed and deployed to the construction of frames with compactly supported elements of small shrinking supports for Besov and Triebel-Lizorkin spaces in the general setting of a doubling metric measure space in presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. This allows, in particular, to dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2009